Tornado

Un tornado es un fenómeno meteorológico que se manifiesta como una columna de aire que rota de forma violenta y potencialmente peligrosa, estando en contacto tanto con la superficie de la Tierra como con una nube cumulonimbus o, excepcionalmente, con la base de una nube cúmulus.1 Siendo los fenómenos atmosféricos más intensos que se conocen, los tornados se presentan de diferentes tamaños y formas pero generalmente tienen la forma de una nube embudo, cuyo extremo más angosto toca el suelo y suele estar rodeado por una nube de desechos y polvo. La mayoría de los tornados cuentan con vientos que llegan a velocidades de entre 65 y 180 km/h, miden aproximadamente 75 metrosde ancho y se trasladan varios kilómetros antes de desaparecer. Los más extremos pueden tener vientos con velocidades de hasta 480 km/h, medir hasta 1,5 km de ancho y permanecer tocando el suelo a lo largo de más de 100 km de recorrido.

Anuncios

Tsunami

Un maremototsunami (del japonés tsu: ‘puerto’ o ‘bahía’, ynami: ‘ola’; literalmente significa ‘gran ola en el puerto’) es unaola o un grupo de olas de gran energía y tamaño que se producen cuando algún fenómeno extraordinario desplaza verticalmente una gran masa de agua. Se calcula que el 90% de estos fenómenos son provocados por terremotos, en cuyo caso reciben el nombre, más preciso, de «maremotos tectónicos».

Un maremoto acercándose a la costa. Un declive menos acentuado hace que las olas de un maremoto pierdan fuerza y altura.

Un declive con mayor profundidad hace a que las olas de un maremoto sean más altas y potencialmente destructivas.

La energía de un tsunami depende de su altura (amplitud de laonda) y de su velocidad. La energía total descargada sobre una zona costera también dependerá de la cantidad de picos que lleve el tren de ondas (en el maremoto del océano Índico de 2004hubo 7 picos). Este tipo de olas remueven una cantidad de agua muy superior a las olas superficiales producidas por el viento.

Terremoto

Un terremoto, también llamado seísmosismo (del griego “σεισμός”, temblor) otemblor de tierra1 es una sacudida del terreno que se produce debido al choque de las placas tectónicas y a la liberación de energía en el curso de una reorganización brusca de materiales de la corteza terrestre al superar el estado de equilibrio mecánico. Los más importantes y frecuentes se producen cuando se libera energía potencial elástica acumulada en la deformación gradual de las rocas contiguas al plano de una falla activa, pero también pueden ocurrir por otras causas, por ejemplo en torno a procesos volcánicos, por hundimiento de cavidades cársticas o por movimientos de ladera.

Terremotos inducidos

Hoy en día se tiene la certeza de que si se inyectan en el subsuelo, ya sea como consecuencia de la eliminación de desechos ensolución o en suspensión, o por la extracción de hidrocarburos, se provoca, con un brusco aumento de la presión intersticial, una intensificación de la actividad sísmica en las regiones ya sometidas a fuertes tensiones. Pronto se deberían controlar mejor estossismos inducidos y, en consecuencia, preverlos, tal vez, pequeños sismos inducidos pudieran evitar el desencadenamiento de un terremoto de mayor magnitud.

Inundación

Una inundación es la ocupación por parte del agua de zonas que habitualmente están libres de ésta, bien por desbordamiento de ríos y ramblas, por subida de las mareas por encima del nivel habitual o por avalanchas causadas por tsunamis.

Las inundaciones fluviales son procesos naturales que se han producido periódicamente y que han sido la causa de la formación de las llanuras en los valles de los ríos, tierras fértiles donde tradicionalmente se ha desarrollado la agricultura en vegas y riberas.

En las zonas costeras los embates del mar han servido para modelar las costas y crear zonas pantanosas como albuferas y lagunas que, tras su ocupación atópica, se han convertido en zonas vulnerables.

Ciclón tropical

Ciclón tropical es un término meteorológico usado para referirse a un sistema de tormentas caracterizado por una circulación cerrada alrededor de un centro de baja presión y que produce fuertes vientos y abundante lluvia. Los ciclones tropicales extraen su energía de la condensación de aire húmedo, produciendo fuertes vientos. Se distinguen de otras tormentas ciclónicas, como las bajas polares, por el mecanismo de calor que las alimenta, que las convierte en sistemas tormentosos de “núcleo cálido”. Dependiendo de su fuerza y localización, un ciclón tropical puede llamarse depresión tropical, tormenta tropical, huracán, tifón o simplemente ciclón.

Su nombre se deriva de los Trópicos y su naturaleza ciclónica. El término “tropical” se refiere tanto al origen geográfico de estos sistemas, que se forman casi exclusivamente en las regiones tropicales del planeta, como a su formación en masas de aire tropical de origen marino. El término “ciclón” se refiere a la naturaleza ciclónica de las tormentas, con una rotación en el sentido contrario al de las agujas del reloj en el hemisferio norte y similar al de las agujas del reloj en el hemisferio sur.

Los ciclones tropicales pueden producir vientos, olas extremadamente grandes y extremadamente fuertes, tornados, lluvias torrenciales (que pueden producir inundaciones y corrimientos de tierra) y también pueden provocar marejadas ciclónicas en áreas costeras. Se desarrollan sobre extensas superficies de agua cálida y pierden su fuerza cuando penetran en tierra. Esa es una de las razones por la que las zonas costeras son dañadas de forma significativa por los ciclones tropicales, mientras que las regiones interiores están relativamente a salvo de recibir fuertes vientos. Sin embargo, las fuertes lluvias pueden producir inundaciones tierra adentro y las marejadas ciclónicas pueden producir inundaciones de consideración a más de 40 km hacia el interior.[1]

Aunque sus efectos en las poblaciones y barcos pueden ser catastróficos, los ciclones tropicales pueden reducir los efectos de una sequía. Además, llevan el calor de los trópicos a latitudes más templadas, lo que hace que sea un importante mecanismo de la circulación atmosférica global que mantiene en equilibrio la troposfera y mantiene relativamente estable y cálida la temperatura terrestre.

Muchos ciclones tropicales se desarrollan cuando las condiciones atmosféricas alrededor de una débil perturbación en la atmósfera son favorables. Otras se forman cuando otros tipos de ciclones adquieren características tropicales. Los sistemas tropicales son conducidos por vientos direccionales hacia la troposfera; si las condiciones continúan siendo favorables, la perturbación tropical se intensifica y puede llegar a desarrollarse un ojo. En el otro extremo del abanico de posibilidades, si las condiciones alrededor del sistema se deterioran o el ciclón tropical toca tierra, el sistema se debilita y finalmente se disipa

Wikipedia:Artículos buenos

Granizo

El granizo o pedrisco es un tipo de precipitación que consiste en partículas irregulares de hielo. El granizo se produce en tormentas intensas en las que se producen gotas de agua sobreenfriadas, es decir, aún líquidas pero a temperaturas por debajo de su punto normal de congelación (0 °C), y ocurre tanto en verano como en invierno, aunque el caso se da más cuando está presente la canícula, días del año en los que es más fuerte el calor.

El agua sobreenfriada continúa en ese estado debido a la necesidad de una semilla sólida inicial para iniciar el proceso de cristalización. Cuando estas gotas de agua chocan en la nube con otras partículas heladas o granos de polvo pueden cristalizar sin dificultad congelándose rápidamente. En las tormentas más intensas se puede producir precipitación helada en forma de granizo especialmente grande cuando éste se forma en el seno de fuertes corrientes ascendentes. En este caso la bola de granizo puede permanecer más tiempo en la atmósfera disponiendo de una mayor capacidad de crecimiento. Cuando el empuje hacia arriba cesa o el granizo ha alcanzado un tamaño elevado el aire ya no puede aguantar el peso de la bola de granizo y ésta acaba cayendo.

Zonas de Riesgo en el Estado Mérida

Vulnerabilidad de los desastres naturales en Merida

Muchos países se muestran cada vez más vulnerables ante conflictos violentos o desastres naturales que pueden borrar años de desarrollo e intensificar la pobreza y la desigualdad.

El último gran sismo acaecido en la Zona de Fallas de Boconó es conocido como “el gran
terremoto de Los Andes Venezolanos” ocurrido en 1894. Este evento tuvo una intensidad
superior a los 7 grados en la escala de Richter y causó la muerte de más de 350 personas en
todo el estado Mérida. Después de 110 años no se ha registrado un sismo similar

LA FALLA DE BOCONO

Geomorfológicamente, la Falla de Boconó se manifiesta por una serie de valles alineados, depresiones lineales y otros rasgos alineados en un corredor de 1 a 5 km de ancho, orientado, aproximadamente, en dirección N 45° E y a lo largo de unos 500 km en la parte central de los Andes Venezolanos, entre la depresión del Táchira y el Mar Caribe. Al este de Morón, a lo largo de la costa del Caribe, ella se continúa en las fallas de Morón y El Pilar. Hacia el suroeste, termina en una serie de corrimientos y fallamientos inversos en la depresión del Táchira, al extremo norte de la Cordillera Oriental de Colombia. Es la mejor conocida de todas las fallas de Venezuela porque fué una de las primeras en ser reconocida (Rod, 1956), posee una fuerte expresión topográfica y está claramente expuesta a todo lo largo de su extensión. Su movimiento rumbo-deslizante se refleja, principalmente, en el desplazamiento de estructuras pleistocenas. La mayoría de los grandes terremotos ocurridos en tiempos históricos en el occidente de Venezuela, han sido asociados con movimentos de este corredor de fallas. Aunque algunos autores han postulado un desplazamiento principal en sentido normal a lo largo de la Zona de Fallas de Boconó (Shagam, 1972, 1975; Giegengack et al., 1976) y solo movimientos menores rumbo-deslizantes, más recientemente, un detallado estudio de evidencias neotectónicas a lo largo de toda su extensión (Schubert,1980a, 1982, 1984) ha revelado la existencia en esta zona de grandes cuencas cenozóicas (cenozóico tardío) de tracción (pull-appart basins), en las cuales, sin embargo, se pueden evidenciar grandes desplazamientos locales verticales (normales), separados por estrechos segmentos de fallas, con un claro desplazamiento de rumbo lateral-derecho.

FALLA DE LA HECHICERA

Hablando de amenazas naturales, de vulnerabilidad y de riesgo, hay que
destacar, que la tubería matriz del agua de la ciudad de Mérida, pasa exactamente por la
corona del deslizamiento de la Vuelta
Es este un interesante caso de lo que es el
concepto de vulnerabilidad. Cuando ocurra un temblor fuerte a lo largo de esta falla,
extremadamente activa, o se produzca un movimiento sísmico que reactive, aunque sea
un poco este deslizamiento, la ciudad se va a quedar sin agua. La enorme tubería matriz,
de un diámetro increíble, probablemente colapsará.

Inundaciones en el Área

Metropolitana de Mérida

el área analizada se extiende
desde la quebrada La Virgen, en Los Aleros, arriba de Tabay hasta la quebrada La Sucia
en Las González, donde su cauce señala el límite entre los municipios Campo Elías y
Sucre. La cuenca más importante es la del rio Chama, que constituye el eje hidrográfico
dominante, con una dirección noreste-suroeste. Al mismo le cae un conjunto de
quebradas y ríos pequeños, todos con un comportamiento torrencial, es decir, con
crecidas repentinas de alto arrastre de sedimentos, piedras y troncos.

Destacando las crecidas del 30 y 31
de octubre del año 2001 de la quebrada La Pedregosa, que afectó la Pedregosa baja
ocasionando pérdidas millonarias.

La quebrada Gavidia no tiene graves problemas de transporte de materiales, el problema reside en la gente que
ha invadido la quebrada. Toda la zona que va desde la urbanización San José hasta los
Bomberos es de altísimo riesgo. La quebrada La Resbalosa su cuenca no es tan grande,
por lo tanto, tiene una capacidad de unos 30 mts3/seg; sus daños no son muy graves. Sin
embargo, su socia, La Pedregosa, si lo es, ya que puede producir tranquilamente 80
mts3/seg. La zona baja de La Pedregosa es altamente riesgosa. El río Albarregas, viene
más o menos tranquilo hasta que llega al barrio Simón Bolívar, cualquier día una
crecida puede llegar a los 120 mts3/seg, cuando eso suceda, va a haber una tragedia en
todo ese barrio vecino al Albarregas. El río continúa por el parque y cuando llega a laentrada de Los Curos, se encuentra con una serie de viviendas que se han construido en
sus márgenes, lamentablemente, todas esas viviendas están condenadas a desaparecer.
El río Chama venía bien antes, pero ahora, con el crecimiento de la zona de Chamita
donde hay una densidad habitacional muy alta, se producen iguales problemas. La gente
se vuelve a meter en el río, este va a reclamar sus espacios, y con el tiempo se producirá
un colapso.

Peligro

Peligro es una situación que se caracteriza por la “viabilidad de ocurrencia de un incidente potencialmente dañino”, es decir, un suceso apto para crear daño sobre bienes jurídicos protegidos. El peligro es “real” cuando existe aquí y ahora, y es “potencial” cuando el peligro ahora no existe, pero sabemos que puede existir a corto, medio, o largo plazo, dependiendo de la naturaleza de las causas que crean peligro.

Con frecuencia se confunde el “peligro” con un “agente dañino”. Por ejemplo, habitualmente se habla de “sustancias peligrosas”, pero las sustancias no son “peligrosas” sino “dañinas”. El peligro no reside en las sustancias, sino en la forma insegura en que se transportan, almacenan, procesan, utilizan, etc. sustancias dañinas. El peligro hace “probable” un incidente antecedente, mientras que el riesgo hace “posible” el daño consecuente del incidente

Clasificación de los peligros

Dada su naturaleza, un peligro envuelve elementos que pueden ser potencialmente dañinos para la vida de las personas, para la salud, la propiedad o el medio ambiente. Hay varios métodos para clasificar un peligro, pero la mayoría de los sistemas usan variaciones de los factores Posibilidad de que el peligro se vuelva incidente y la Seriedad del incidente que pueda ocurrir.

Un método común es asignar valores tanto a la posibilidad como a la seriedad en una escala numérica (con los valores más altos para los más posibles y los más serios) y multiplicar la una por la otra para establecer una escala comparativa.

Riesgo = Posibilidad de ocurrencia x Seriedad si el incidente ocurre

Esta escala puede usarse para identiifcar que peligros pueden necesitar ser mitigados. Una escala baja de posibilidad de ocurrencia puede significar que el peligro es Latente, mientras que un valor alto puede indicar que podría haber un peligro Activo.

Frente

Un frente es una franja de separación entre dos masas de aire de diferentes temperaturas, y se les clasifica como fríos, calientes, estacionarios y ocluídos según sus características. La palabra frente tiene origen en el lenguaje militar (como frente de batalla) y se asemeja a una batalla porque el choque entre las dos masas produce una actividad muy dinámica de tormentas eléctricas, ráfagas de viento y fuertes aguaceros.

Los frentes meteorológicos son frecuentemente asociados con sistemas de presión atmosféricos. Son generalmente guiados por corrientes de aire y viajan de oeste a este en el hemisferio norte, e inversamente en el sur. Este movimiento se debe a la fuerza de Coriolis, causado por el movimiento de la Tierra en su eje. Los frentes también pueden ser afectados por formaciones geográficas tales como montañas y grandes volúmenes de agua.

Frente frío

El frente frío es una franja de mal tiempo que ocurre cuando una masa de aire frío se acerca a una masa de aire caliente. El aire frío, siendo más denso, genera una “cuña” y se mete por debajo del aire cálido y menos denso.

Los frentes fríos se mueven rápidamente. Son fuertes y pueden causar perturbaciones atmosféricas tales como tormentas de truenos, chubascos, tornados, vientos fuertes y cortas tempestades de nieve antes del paso del frente frío, acompañadas de condiciones secas a medida que el frente avanza. Dependiendo de la época del año y de su localización geográfica, los frentes fríos pueden venir en una sucesión de 5 a 7 días.

En mapas de tiempo, los frentes fríos están marcados con el símbolo de una línea azul de triángulos que señalan la dirección de su movimiento.

Frente cálido

Se llama frente cálido a la parte frontal de una masa de aire tibio que avanza para reemplazar a una masa de aire frío, que retrocede. Generalmente, con el paso del frente cálido la temperatura y la humedad aumentan, la presión sube y aunque el viento cambia no es tan pronunciado como cuando pasa un frente frío. La precipitación en forma de lluvia, nieve o llovizna se encuentra generalmente al inicio de un frente superficial, así como las lluvias convectivas y las tormentas. La neblina es común en el aire frío que antecede a este tipo de frente. A pesar que casi siempre aclara una vez pasado el frente, algunas veces puede originarse neblina en el aire cálido.

Frente ocluido

Un frente ocluido se forma donde un frente caliente móvil más lento es seguido por un frente frío, con desplazamiento más rápido. El frente frío ya con forma de cuña alcanza al frente caliente y lo empuja hacia arriba. Los dos frentes continúan moviéndose uno detrás del otro, y la línea entre ellos es la que forma el frente ocluido.

Así como con los frentes inmóviles, una amplia variedad de condiciones climáticas puede ser encontrada a lo largo de este tipo de frente, pero por lo general, son asociados con los estratos de nubes y la precipitación ligera. Los frentes ocluidos se forman generalmente alrededor de áreas de baja presión y cuando estas están debilitándose.

Los frentes ocluidos están marcados en los mapas meteorológicos con una línea punteada rosada entre las marcas del frente frío y el frente caliente que señalan la dirección de su desplazamiento.

Erupción Volcanica

Una erupción volcánica es una emisión violenta en la superficie terrestre o de otro planeta, de materias procedentes del interior del globo. Exceptuando los géiseres, que emiten agua caliente, y los volcanes de lodo cuya materia, en gran parte orgánica, proviene de yacimientos de hidrocarburos relativamente cercanos a la superficie, las erupciones terrestres se deben a los volcanes.

Características

Las erupciones volcánicas no obedecen a ninguna ley de periodicidad, y no ha sido posible descubrir un método para preverlas, aunque a veces vienen precedidas por sacudidas sísmicas y por la emisión de fumarolas. Su violencia está en relación con la acidez de las lavas y con el contenido de estas en gases oclusos. Una lava rica en sílice -y, por consiguiente, ácida- se caracteriza por una alta viscosidad que se opone al desprendimiento de los gases. Éstos alcanzan así altas presiones y, cuando llegan a vencer la resistencia que encuentran, se escapan violentamente, dando lugar a una erupción explosiva. Por el contrario, una lava básica es mucho más fluida y opone escasa resistencia al desprendimiento de sus gases: las erupciones son entonces menos violentas y pueden revestir un carácter permanente.

Las erupciones son causa del aumento de la temperatura en el magma que se encuentra en el interior del manto. Esto ocasiona una erupción volcánica en la que se expulsa la lava hirviendo que se encontraba en el magma. Puede generar derretimiento de hielos y glaciares, los derrumbes, los aluviones, etc. Las erupciones también se caracterizan por otros factores: temperatura de la lava, su contenido de gases oclusos, estado del conducto volcánico (chimenea libre u obturada por materias sólidas, lago de lava que opone su empuje a la salida del magma del fondo, etc).

Tipos de erupciones

La combinación posible de los factores recién señalados entre sí explica la existencia de varios tipos de volcanes a los cuales corresponden erupciones características. En primer lugar conviene establecer una distinción entre la erupción puntual del magma por una chimenea, y la erupción lineal por una fisura del terreno que puede ser bastante larga. En este último caso se tiene un volcanismo lávico: las erupciones no son violentas y adoptan la forma de gigantescas efusiones de basaltos muy fluidos, cuyas coladas cubren grandes extensiones de terreno alrededor del volcán.

Hawaiana

Esquema de una erupción hawaiana.

Presente en volcanes con volcanismo lávico, son nombradas así por los volcanes de las islas de Hawái. Sus lavas son muy fluidas, sin que tengan lugar desprendimientos gaseosos explosivos; estas lavas se desbordan sólo cuando rebasan el cráter (por lo que forman un lago de lava) y se deslizan con facilidad por las laderas, formando verdaderas corrientes a grandes distancias y construyendo un edificio volcánico con una pendiente muy suave, como se ve en una imagen reciente de la caldera del Halemaumau, en el volcán Kilauea, en la isla de Hawaii. Algunas partículas de lava, al ser arrastradas por el viento, forman hilos cristalinos que los nativos llaman cabellos de la diosa Pelé (divinidad del fuego). Son los más comunes en el mundo.

Estromboliano

Recibe el nombre del Stromboli, volcán de las islas Lípari (mar Tirreno), al Norte de Sicilia. La erupción es permanente, acompañada de frecuentes paroxismos explosivos, y de vez en cuando de coladas de lava. Ésta es fluida, y acompaña al desprendimiento de gases abundantes y violentos, con proyecciones de escorias, bombas y lapilli. Debido a que los gases pueden desprenderse con facilidad, no se producen pulverizaciones o cenizas. Cuando la lava rebasa por los bordes del cráter, desciende por sus laderas y barrancos, pero no alcanza tanta extensión como la del tipo del volcán hawaiano.

Vulcaniano

Su nombre proviene del volcán Vulcano en las islas Lípari. Se desprenden grandes cantidades de gases de un magma poco fluido, que se consolida con rapidez; por ello las explosiones son muy fuertes y la lava ácida y muy viscosa que emite se pulveriza, produciendo mucha ceniza, lanzada al aire acompañadas de otros materiales fragmentarios. Cuando la lava sale al exterior se consolida rápidamente, pero los gases que se desprenden, rompen y resquebrajan su superficie, que por ello resulta áspera y muy irregular, formándose lavas cordadas.

Reciben su nombre en honor a Plinio el Viejo, que falleció en una, y su sobrino Plinio el Joven, que fue el primero en describirlas. La Erupción pliniana difiere de la vulcaniana en que la presión de los gases en la cámara de magma es muy fuerte y produce explosiones muy violentas. Es distintivo de ellas el que las lavas no sean usualmente basálticas, sino riolíticas, y que exista una gran emisión de pumitas, gases tóxicos y aerosoles. Forma nubes ardientes en forma de pino u hongo, que, al enfriarse, producen precipitaciones de cenizas, que pueden llegar a sepultar ciudades, como le ocurrió a Pompeya y Estabia en el año 79 d. C.

Peleana

De los volcanes de las Antillas es célebre el de Monte Pelée, en Martinica por su erupción de 1902, que destruyó su capital, San Pedro. La lava es extremadamente viscosa y se consolida con gran rapidez, llegando a tapar por completo el cráter; la enorme presión de los gases, sin salida, levanta este tapón que se eleva formando una gran aguja rocosa. Así ocurrió el 8 de mayo de 1902, cuando las paredes del volcán cedieron a tan enorme empuje, abriéndose un conducto lateral por el que salieron con extraordinaria fuerza los gases acumulados a elevada temperatura y que, mezclados con cenizas, formaron la nube ardiente que alcanzó 28.000 víctimas, a una velocidad cercana a los 500 km/h. Como resultado de esta erupción volcánico quedó la formación de un pitón volcánico.

Krakatoano

Una explosión volcánica muy terrible, fue la del volcán Krakatoa. Originó una tremenda explosión y enormes maremotos. Este tipo de erupciones se deben a que la lava ascendente es muy viscosa, con una temperatura bastante fría, con lo que va cerrando al enfriarse la abertura del cráter lo cual va acumulando gases que al final ocasionan una gran explosión con la voladura de parte del cráter y, muchas veces, con la formación de un pitón volcánico, es decir, un monte o roque de forma cilíndrica formado por la extrusión de una lava muy viscosa, es decir, poco líquida, que se solidifica muy rápidamente.

Erupciones submarinas

Dibujo esquemático de una erupción submarina.

Las erupciones submarinas son más frecuentes que las de los volcanes que emiten en las tierras emergentes. Sin embargo, suelen pasar inadvertidas porque la presión elevada del agua en las zonas abisales provoca la disolución de los gases y detiene las proyecciones; así es como ningún signo de la erupción puede verse en la superficie del mar. Caso contrario es el de las erupciones en el fondo de los lagos, que es observable en la superficie.

« Older entries